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Abstract—To enhance the visibility and usability of images
captured in hazy conditions, many image dehazing algorithms
(DHAs) have been proposed. With so many image DHAs, there
is need to evaluate and compare these DHAs. Due to the lack
of the reference haze-free images, DHAs are generally evaluated
qualitatively using real hazy images. But it is possible to perform
quantitative evaluation using synthetic hazy images since the
reference haze-free images are available and full-reference (FR)
image quality assessment (IQA) measures can be utilized. In this
paper, we follow this strategy and study DHA evaluation using
synthetic hazy images systematically. We first build a synthetic
haze removing quality (SHRQ) database. It consists of two
subsets: regular and aerial image subsets, which include 360 and
240 dehazed images created from 45 and 30 synthetic hazy images
using 8 DHAs, respectively. Since aerial imaging is an important
application area of dehazing, we create an aerial image subset
specifically. We then carry out subjective quality evaluation study
on these two subsets. We observe that taking DHA evaluation as
an exact FR IQA process is questionable, and the state-of-the-art
FR IQA measures are not effective for DHA evaluation. Thus we
propose a DHA quality evaluation method by integrating some
dehazing-relevant features, including image structure recovering,
color rendition, and over-enhancement of low-contrast areas.
The proposed method works for both types of images, but we
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further improve it for aerial images by incorporating its specific
characteristics. Experimental results on two subsets of the SHRQ
database validate the effectiveness of the proposed measures.

Index Terms—Image dehazing, dehazing algorithm evaluation,
quality assessment, synthetic haze, regular/aerial image.

I. INTRODUCTION

IMAGES captured from outdoor scenes using visible light
imaging devices can suffer from visibility reduction due

to the atmospheric scattering caused by atmospheric particles
such as haze and cloud [1], [2]. This problem is particularly
serious in aerial imaging since the atmosphere condition is
uncontrollable, and haze or cloud is frequently observed in
such scenario. To get clear and visually pleasuring images un-
der hazy atmosphere conditions and to facilitate further image
analysis, many image dehazing algorithms (DHAs) have been
proposed [3], [4], [5], [6], [7], [8], [9], [10], [11]. Specifically
for aerial images captured by remote sensing satellites, there
are also some algorithms proposed to detect and remove the
haze or cloud [12], [13], [14]. With so many available image
DHAs, how to evaluate the perceptual quality of the dehazing
and select the best DHA becomes a problem. What’s more,
the DHAs have not been systematically tested in aerial images
yet, while aerial imaging is an important application area of
dehazing. Compared with the extensive research of DHAs,
the evaluation of DHAs falls behind, and the evaluation of
DHAs in aerial images is even less researched. In the literature,
DHAs evaluation generally follows two strategies: using real
hazy images and using synthetic hazy images. A comparison
of these two strategies is illustrated in Fig. 1.

Evaluating DHA using real hazy images is straightforward,
and it can be interpreted as a no-reference (NR) image quality
assessment (IQA) problem. As illustrated in Fig. 1, we can
evaluate DHAs by assessing the perceptual quality of the
dehazed images. The most intuitive way is to evaluate the
dehazed images qualitatively by human subjects. It is reliable
but expensive and time-consuming, and it can not be embedded
into any optimization frameworks and practical systems. A
better way is to introduce some quantitative evaluators. But
this is difficult since image dehazing is a complicate process,
and different DHAs can have distinctive effects. Since the
primary objective of dehazing is to remove haze and enhance
contrast, some evaluation methods have been proposed by
accessing the contrast enhancement quality [15]. But these
measures show low correlation with the overall perceptual
quality [16], since DHAs not only remove haze but also
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Fig. 1. Comparison of DHA evaluation using synthetic and real hazy images.

introduce various other effects. For overall quality assessment,
we should consider contrast enhancement, image structure
recovering, color rendition, over-enhancement, etc [17]. There
are also some other measures proposed to assess the quality of
enhanced images [18], [19], but these measures are designed
to evaluate general image enhancement algorithms, and they
are not suitable and reliable for DHA evaluation.

Since performing quantitative DHA evaluation with real
hazy images is difficult, some researchers suggest using hazy
images synthesized from haze-free images [1], [2], [8], [9],
[10], [11], [20], and conduct quantitative evaluation with
the available haze-free images. These methods follow the
framework illustrated in the left part of Fig. 1, and generally
consist of several key steps:

1) synthesizing hazy images using haze-free images and the
corresponding depth;

2) dehazing using the target DHA;
3) assessing the quality of the dehazed images using the

haze-free images as the “ground-truth”.

Under such strategy, DHA evaluation can be solved via
full-reference (FR) IQA between the haze-free and dehazed
images. Many papers follow this strategy [1], [8], [9], [10],
[11], [20], and utilize some basic FR IQA measures such
as peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index [21] for evaluation. Owing to the availability
of the “ground-truth” haze-free images, it is easy to perform
quantitative evaluation and comparison. Thus this strategy is
becoming more and more widely accepted. Besides DHA eval-
uation, some learning-based DHAs also follow this strategy
since the “ground-truth” is available.

Compared with DHA evaluation in regular images, DHA
evaluation in aerial images is even less researched. Similar
to the situations in regular images, DHA evaluation in aerial
images is conducted using either real or synthetic hazy images
[12], [13], [14]. When using real hazy images, either direct
qualitative comparison [13] or some quantitative measures

Hazy image Dehazed image Haze-free image

Fig. 2. The dehazed image may not be so close to the haze-free image from
an image fidelity perspective, but it still has high perceptual quality.

designed for regular images are utilized [12]. When using
synthetic hazy images, simple quality measures like PSNR are
used [14]. In general, DHA evaluation in aerial images inherits
the strategies and measures from the evaluation in regular
images. No comprehensive DHAs evaluation is conducted in
aerial images yet, and no specific DHA evaluation measures
is designed for aerial images.

In this paper, we study DHA evaluation in both regular
and aerial images using synthetic haze systematically. We
investigate DHA evaluation from the perceptual quality point
of view. In another words, human beings are the ultimate
receiver of the dehazed images and the goal is to estimate
the human perceived dehazing quality. We first construct
a synthetic haze removing quality (SHRQ) database, which
includes a regular image subset and an aerial image subset.
Both subsets include dehazed images created from synthetic
hazy images using 8 representative DHAs. Haze-free images
and the corresponding depth images are used to synthesize the
hazy images using the widely utilized haze model. We then
carry out subjective quality evaluation study on the two subsets
of the SHRQ database. Results show that the state-of-the-art
FR IQA measures are not effective for DHA evaluation. We
observe that using the haze-free images as the “ground-truth”
and taking DHA evaluation as an exact FR IQA process can be
problematic. The FR DHA evaluation is slightly different from
tradition FR IQA. Dehazing is an image enhancement process,
whose desired enhancement degree is hard to control. If the
underlying reference haze-free image is not sharp enough, it
is possible for the dehazed image to have a better perceptual
quality than the reference image since humans often prefer
clear and sharp images. As illustrated in Fig. 2, sometimes
the dehazed image may not be so close to the reference
image from an image fidelity perspective, but it still has high
perceptual quality. Whereas in FR IQA, being closer to the
reference image means better perceptual quality.

To solve the low correlation problem of current FR IQA
measures in FR DHA evaluation, we propose a quality mea-
sure which is a combination of 3 components: image structure
recovering, color rendition, and over-enhancement of low-
contrast areas. We use the haze-free image as a reference of
the original image content, and derive a similarity term to
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measure the image structure recovering during dehazing. To
tackle the problem described in the previous paragraph, we
modify the structure features before calculating the similarity.
Besides the image structures, we incorporate another two
factors including color rendition and over-enhancement, since
some DHAs can cause undesirable side effects such as color
shift and over-enhancement of the low-contrast areas. The
proposed method works for both regular and aerial images,
but we further improve it for aerial images by incorporating
the specific characteristics of aerial images. The effectiveness
of the proposed measure is verified on the SHRQ database.
Considering that DHA evaluation using synthetic hazy images
is becoming more widely used, the proposed measure can be
of great value under such evaluation strategy.

The remainder of this paper is organized as follows. In
Section II, we shortly review some related works. Section
III describes the construction of the SHRQ database and the
subjective user study. Section IV presents the details of the
proposed measure. In Section V, we improve the proposed
measure for aerial images by incorporating the specific char-
acteristics. Effectiveness of the proposed method is verified in
Section IV, where we also give comprehensive analyses of the
proposed measure. Section VII concludes this paper.

II. RELATED WORKS

In this section, we shortly review the atmospheric scattering
model, the state-of-the-art DHAs, and the evaluation of DHAs.

A. Atmospheric Scattering Model

In the areas of computer vision and computer graphics,
hazy image formation is widely modeled by the following
atmospheric scattering model [22]

I(x) = J(x)t(x) +A
(
1− t(x)

)
, (1)

where I is the observed hazy image, J is the real scene
radiance, t is the medium transmission, A is the global atmo-
spheric light, and x denotes the pixel index. In homogenous
atmosphere, the transmission t can be modeled by

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and
d indicates the distance from the scene point to the camera.
The attenuation term J(x)t(x) describes how scene radiance
gets attenuated when traversing from a scene point to the
camera, whereas the airlight term A

(
1− t(x)

)
describes how

atmosphere reflects environmental illumination to the camera.
This atmospheric scattering model is the basis of many DHAs.

B. Dehazing Algorithms (DHAs)

With the demand of dehazing in consumer photography and
computational imaging, many DHAs have been proposed in
recent years. The goal of dehazing is to estimate J, t, and
A from the observed image I. Fattal [3] refined the image
formation model to account for surface shading. Based on that,
he introduced a method to remove haze and estimate trans-
mission. Tarel and Hautière [4] took dehazing as a particular

filtering problem, and proposed a method based on median
filter. As an alternative of the median filter, they proposed an
edge and corner preserving filter. He et al. [5] introduced a
dark channel prior (DCP) for dehazing. The DCP describes
a phenomenon that in the non-sky regions at least one color
channel has very low intensity at some pixels. Xiao and Gan
[6] introduced another method based on guided joint bilateral
filter. Meng et al. [7] explored the inherent boundary constraint
on the transmission, and proposed a regularization method to
remove haze. Tang et al. [8] utilized random forest to learn a
regression model to estimate the transmission from some haze-
relevant features. Lai et al. [9] derived the optimal transmission
map under two scene constraints, i.e., locally consistent scene
radiance and context-aware scene transmission. Berman et al.
[10] introduced a non-local method based on the assumption
that an image could be represented via a few hundreds of
distinct colors, which formed clusters in RGB space. Cai et al.
[11] introduced an end-to-end system for dehazing via neural
network. There are also some DHAs specifically designed for
aerial images. Long et al. [13] proposed a remote sensing
image DHA based on DCP. Pan et al. [12] introduced a method
based on the differences of dark channels between remote
sensing images and regular images. Xu et al. [14] proposed a
cloud removal method by learning the sparse representations
of the cloudy and cloud-free areas. The readers can refer to
the relevant surveys for more DHAs [1], [2].

C. DHA Evaluation
An overview and discussion of DHA evaluation has been

given in Section I. The situation is that current DHA evaluation
follows the two strategies illustrated in Fig. 1. Using real hazy
images is the most desirable way, but it is not easy to conduct
quantitative evaluation. Though some quantitative measures
are proposed [15], they show low correlation with the overall
perceptual quality of the dehazing [16], [17]. The reason is that
they only focus on the quality of contrast enhancement, and
they omit the sky regions where side-effects occur frequently.
Thus qualitative comparison is more recognized under such
strategy, but it undergoes all drawbacks of subjective testing.
To overcome this situation, using synthetic hazy images is
introduced [1], [2], [8], [9], [10], [11], [20]. It is easy to
perform quantitative evaluation under such strategy, and it has
been becoming widely recognized. Besides DHA evaluation,
some methods use this strategy to learn a mapping from hazy
images to haze-free images [8], [11]. For aerial images, the
DHA evaluation inherits the methods from DHA evaluation
for regular images. In this paper, we first propose a quality
measure for reliable DHA evaluation, and then improve it for
aerial images by incorporating the specific characteristics.

III. SUBJECTIVE EVALUATION OF DEHAZING METHODS
USING SYNTHETIC HAZY IMAGES

Intuitively, current state-of-the-art FR IQA measures may
not be effective enough for FR DHA evaluation due to the
reasons described in Section I. To verify this and to facilitate
the design of FR DHA evaluation method, we construct a
synthetic haze removing quality (SHRQ) database and conduct
subjective experiments on this database.
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Fig. 3. Example reference and the corresponding synthesized hazy images in
the SHRQ database. Left: regular images, right: aerial images.

A. Database Construction

The SHRQ database consists of two subsets: the regular
image subset and aerial image subset. Regular images denote
indoor or outdoor images captured in our daily life, while
aerial images denote the visible-light images captured by
remote sensing satellite.

1) The Regular Image Subset: We collect 45 high quality
haze-free regular images and the corresponding depth from
[23] and the Middlebury Stereo Datasets [24], [25]. The image
resolution varies from 610 × 555 to 1024 × 680. We utilize
the atmospheric scattering model described in Section II-A to
synthesize haze. The real scene radiance J and the depth d
are available. Following the work presented in [11], [20], the
scattering coefficient of the atmosphere β is set by default to
1, which indicates moderate and homogenous haze, and the
atmospheric light A is set to 1. Then we can synthesize hazy
image I via Eq.(1) and Eq.(2). The synthesized hazy images
are then processed by 8 state-of-the-art DHAs, including
Fattal08 [3], Tarel09 [4], He09 [5], Xiao12 [6], Meng13 [7],
Lai15 [9], Berman16 [10], and Cai16 [11]. A total of 360
regular dehazed images are generated.

2) The Aerial Image Subset: We collect 30 high quality
aerial images from the AID database [26]. All images share the
same resolution of 600× 600. Considering that aerial images
are captured from very high altitude and most scene points
share a similar depth, we ignore the influence of depth and
synthesize hazy images via Eq.(1) directly. The transmission
t is set as a constant randomly selected from range [0.1, 0.7],
and the atmospheric light A is set to a random value in range
[0.7, 1]. Similar haze synthesizing protocol has been used in
many dehazing studies [2], [8]. The same 8 DHAs are used
to generate 240 aerial dehazed images.

The dehazed images, synthesized hazy images, and the
reference haze-free images together constitute the SHRQ
database. Example reference and the corresponding synthe-
sized hazy images are shown in Fig. 3.

Fig. 4. GUI for subjective rating. The hazy, reference, and dehazed images
are shown to the subjects.

TABLE I
SUBJECTIVE EXPERIMENT SETUP

Category Item Detail

Monitor
Model EIZO RX440 / LED / 29.8 in

Resolution 2560×1600

Methodology
Method Triple-stimulus

Quality-scale 5-grade continuous
Presentation order Random

Test settings

Sessions 3

Subjects number
35 valid / 3 outliers
24 male / 14 female

Viewing distance 3 times image height
Environment Laboratory

B. Subjective Testing

We perform subjective quality assessment experiments with
the SHRQ database. Human subjects need to rate the quality
of the dehazed images using a five-grade continuous quality
scale. Besides the dehazed image, the hazy image and the
reference haze-free image are also shown, and subjects are
asked to give an overall rating considering both haze removing
effect and image content preserving effect. It means that a
good DHA should not only remove haze but also preserve
the original image content. All test images are shown in
a random order with a MATLAB graphical user interface
(GUI) on a LED monitor, which is calibrated according to
the recommendations of ITU-R BT.500-13 [27]. A screenshot
of the rating GUI is shown in Fig. 4. All images are shown at
the original resolutions. A total of 38 subjects participate in the
subjective experiments. The subjects are seated at a viewing
distance of around 3 times the image height in a laboratory
environment which has normal indoor illumination levels. The
full test is divided into 3 sessions, and each session lasts
less than 30 minutes. 17 valid subjects participate in the two
sessions of the regular subset, and 18 valid subjects participate
in another session of the aerial subset. Table I lists an overview
of the test methodology and condition.

C. Data Processing and Analysis

We follow the recommendations given in [27] to exclude
outliers and reject subjects. Rating for an image is considered
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Fig. 5. Mean and std of subjective ratings of all compared DHAs in the
regular and aerial subsets of the SHRQ database.

as outlier if it is outside 2 (if normal) or
√
20 (if non-normal)

standard deviations (stds) about the mean rating of that image.
A subject with more than 5% outlier evaluations are rejected.
Four subjects are rejected in our experiments. Mean opinion
score (MOS) is calculated for each dehazed image. We first
normalize the ratings of each subject: zij =

rij−ri
σi

, where ri is
the mean rating given by the ith subject, and σi is the std. Then
the ratings for each image are averaged: zj = 1

Nj

∑Nj

i=1 zij ,
where Nj is the number of valid ratings (after outlier remov-
ing) for the jth image. At last a liner scaling is applied to
derive the final MOS value: MOSj =

100(zj+3)
6 .

To have a compare of the DHAs, we illustrate the mean
and std of the subjective ratings of the dehazed images derived
from each DHA in Fig. 5. Subjective scores of the regular and
aerial subsets are shown separately. The overall performance
rankings of all compared DHAs are similar in regular and
aerial images. He09, Xiao12, and Berman16 perform the best,
while Fattal08, Lai15, and Tarel09 show lower mean ratings,
and the rest are in between. But note that the specific relative
rankings are quite different in regular and aerial images. It
indicates that some DHAs are better at regular images while
some other are better at aerial images. The stds of all DHAs
are quite large, which means that image content has influence
on the effectiveness of the DHAs.

D. Performance of Current FR IQA Measures

In recent years, some quality evaluators based on structural
computational model of human visual system have been pro-
posed [28], [29], [30], [31]. As discussed in Section I, the
similarity between dehazed images and reference haze-free
images calculated via image quality evaluators is used as the
quantitative evaluator under the strategy of DHA evaluation
using synthetic hazy images [1], [8], [9], [10], [11], [20].
We test if state-of-the-art FR IQA measures are accurate
enough for FR DHA evaluation. We select 10 recognized FR
IQA measures, including PSNR, SSIM [21], MS-SSIM [32],
VIF [33], MAD [34], IW-SSIM [35], GSI [36], FSIM [37],

TABLE II
SRCC PERFORMANCE OF FR IQA MEASURES ON THE SHRQ DATABASE

Subset PSNR SSIM MS-SSIM VIF MAD

Regular 0.5972 0.5627 0.5836 0.6287 0.5780
Aerial 0.8246 0.8207 0.7895 0.7048 0.6308

Subset IW-SSIM GSI FSIM IFC PSIM

Regular 0.5657 0.6029 0.6256 0.5549 0.6238
Aerial 0.7949 0.7832 0.7424 0.5630 0.7593

IFC [38] and PSIM [39], and test their performance on the
constructed SHRQ database. Table II lists the corresponding
performance. Only spearman rank-order correlation coefficient
(SRCC) is listed here. More evaluation results using other
criteria are given in Section VI. It is observed that FR IQA
measures are relatively more effective in aerial images. But
all measures are not effective enough, and a more effective
measure is needed for DHA evaluation.

IV. THE PROPOSED OBJECTIVE QUALITY MEASURE

To develop a new dehazing quality measure, we first need
to analyse the introduced typical artifacts. Fig. 6 illustrates
several typical failures of image dehazing, including poor
dehazing effect, structural damage, color shift, and over-
enhancement of the low-contrast areas. Some DHAs adopt a
moderate strategy to avoid side-effects during dehazing, but it
may leave too much haze in the image. Structural damage is
another source of distortion, and the image content is destroyed
during dehazing. Color shift generally occurs when the hazy is
dense, and it makes the inferring of the original color difficult.
Over-enhancement is generally observed in the low-contrast
areas, where some hardly-perceived image details are taken
as the image structures and enhanced out. To cope with these
distortions, we introduce a quality measure by integrating three
components: image structure recovering, color rendition, and
over-enhancement. The measure proposed in this section is
a general measure, and it works for both regular and aerial
images. We will incorporate the specific characteristics of
aerial images, and make it more effective for aerial images
in the next section. The details of the measure are as follows.

A. Image Structure Recovering

We deal with the poor dehazing effect and structural damage
with a unified structure recovering map, since these two
distortions both result in loss of image structures. Image
structure is widely used in many IQA measures due to its
effectiveness of capturing image degradation [21], [32], [35],
[36], [37], [39], [40]. We extract haze-aware structural features
and do some modifications to them to consider the differences
between FR DHA evaluation and FR IQA. Then structural
similarity is utilized as the core feature. We only consider
luminance information when extracting structural features.

1) Haze-aware Structural Features: The extracted haze-
aware structural feature is based on traditional structural
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Fig. 6. Several typical failures of image dehazing. All 8 dehazed images has relatively low perceptual quality. Top: regular image, bottom: aerial image.

features. Given an image I, we first compute the local mean
and variance [21], [41], [42], [43]

µ(i, j) =
∑
k,l

w(k, l)I(i+ k, j + l), (3)

σ(i, j) =

√∑
k,l

w(k, l)
[
I(i+ k, j + l)− µ(i, j)

]2
, (4)

where i, j are pixel indexes, µ is the local mean, and w is
a local Gaussian weighting window. σ is a good structural
feature which is sensitive to haze, since haze introduces
contrast reduction. But local variance σ is sensitive to local
mean µ. Thus we derive the normalized local variance

η =
σ

µ+ ε
1

, (5)

where ε
1

is a positive constant used to avoid instability, and η
is the desired haze-aware structural feature. This feature was
previously used in [44] to estimate the haze density. It has
been proved to be a good descriptor of both haze and image
structures. Via Eq.(3)-Eq.(5), we can derive the local mean,
variance, and normalized variance for the reference haze-free
image Ir and the dehazed image Id: µr, µd, σr, σd, ηr, ηd.

2) Structural Feature Modification: In FR IQA, structural
similarity is a frequently utilized strategy. But as shown in
Table II, the traditional way of using structural similarity is not
effective enough for FR DHA evaluation. It may be caused by
two reasons. The first is that the traditional structural features
are not specifically designed for dehazing and they are not
sensitive enough to haze. The second is that they have not
considered the problem illustrated in Fig. 2, and there are
some differences between FR DHA evaluation and traditional
FR IQA. In this paper, we first extract haze-aware structural
features as described above, and then do some modifications
to them to cope with these problems.

Fig. 7 illustrates another example which has the same
problem shown in Fig. 2. The relevant feature maps are also
shown. Id is not close to Ir from a perspective of image
fidelity, but Id still has high perceptual quality. We observe
that this situation generally occurs when Id is more enhanced
than Ir. In this case, we generally have µr > µd and σr < σd,
since some DHAs try to depress the luminance and boost the
contrast to enhance the image. This phenomenon is easily
observed in Fig. 7. If we compare Id and Ir directly like

(a) Ir (b) µr (c) σr

(d) Id (e) µd (f) σd

(g) µ′
d (h) σ′

d (i) s

Fig. 7. An illustration of the situation that Id is more enhanced than Ir . The
relevant feature maps (linear scaled for better visualization) are also shown.

traditional FR IQA measures, the similarity will be low. Thus
we modify µd, σd, and ηd to solve this problem.

Traditional FR IQA measures will punish the situation that
Id has lower µ and higher σ than Ir. We think that contrast
enhancement often decreases µ and increases σ, and they do
not do much harm to the perceptual quality. Thus we try to
weaken this punishment. Specifically, we modify µd via

µ′d = fµ(µd,µr)

=

{
µr + k · (µd − µr) if µd < µr
µd otherwise ,

(6)

and modify σd via

σ′d = fσ(σd,σr)

=

{
σr + k · (σd − σr) if σd > σr
σd otherwise ,

(7)

where µ′d and σ′d are the modified local mean and variance of
the dehazed image, k is a linear scaling factor which is lower
than 1 and it is empirically set. We will test the proposed
method’s sensitivity to k in Section VI. fµ and fσ increase the
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Ir Id c

Fig. 8. An illustration of color shift and the calculated color rendition map.
Top: regular image, bottom: aerial image.

calculated similarity between Id and Ir when µd < µr and
σd > σr. After the modification, we can derive the modified
normalized local variance of the dehazed image

η′d =
σ′d

µ′d + ε
1

. (8)

3) Structure Recovering: Then we compute the haze-aware
structure recovering map using the similarity function widely
used in IQA [21], [32], [35], [36], [37], [39]

s =
2ηr · η′d + ε

2

η2
r + η

′2
d + ε2

, (9)

where ε2 is a positive constant acting the same stabilization
function as ε

1
. Fig. 7 illustrates examples of the original

and modified feature maps and the final structure recovering
map. Compared with traditional image fidelity measures, better
similarity between Ir and Id is shown in s.

B. Color Rendition

Besides structures, color information is also important cue
for quality estimation [37], [39]. Since dehazing can cause
color shift as illustrated in Fig. 8, we incorporate a color
rendition component into the proposed method. The widely
used YIQ color space is utilized to transfer the given image y = 0.299r + 0.587g + 0.114b

i = 0.596r − 0.274g − 0.322b
q = 0.211r + 0.523g + 0.312b

, (10)

where r, g, b are the RGB components of the input image,
y is the transferred luminance information, and i, q represent
the chrominance information.

Since we have considered luminance information in the
structure recovering component, we only consider chromi-
nance information here. For Ir and Id, we apply the same
transformation, and derive the chrominance as ir, id and qr,
qd. Then we calculate the color rendition as

c = ci · cq =
2ir · id + ε

3

i2r + i
2
d + ε3

· 2qr · qd + ε
3

q2r + q
2
d + ε3

, (11)

where ε3 is a stabilization constant. Fig. 8 illustrates an
example of the calculated color rendition map. It is observed
that c captures the color shift well.

(a) Ir (b) Id (c) s

(d) v (e) w

Fig. 9. An illustration of over-enhancement in the low-contrast areas and
several related feature maps.

C. Over-Enhancement

As illustrated in Fig. 9, over-enhancement in low-contrast
areas is another major distortion. Some hardly-observed image
details are enhanced as image structures. Ideally, such kind of
over-enhancement should be able to be captured by structure-
like descriptors, since it introduces large variance changes.
It is observed from Fig. 9(c) that the introduced structure
recovering map s does capture such over-enhancement. But
compared with its harm to the overall perceptual quality,
the describing ability is weak. It results from two reasons:
on one hand, over-enhancement in low-contrast areas can do
much more harm than in textured areas, and on the other
hand, low-contrast areas are usually background areas which
occupy a small part of the scene. Thus we introduce an over-
enhancement term specifically for such distortions.

We introduce a variance similarity map v to better describe
the over-enhancement in low-contrast areas

v =
2σr · σd + ε

4

σ2
r + σ

2
d + ε

4

. (12)

As illustrated in Fig. 9(c) and Fig. 9(d), s describes the
perceptual quality of textured foreground areas better, whereas
v captures the over-enhancement of smooth background areas
better. Considering the success of content-based or visual
attention-based pooling in IQA [45], [46], [47], [48], [49],
[50], [51], we introduce a content-based weighting map

w =
1

σr + ε
5

. (13)

Fig. 9(e) illustrates an example of w. Contrary to traditional
content-based weighting maps which highlight the content-rich
areas, w highlights the low-contrast background areas where
over-enhancement occurs frequently. It is what we desired.
Then the overall over-enhancement is dscribed as

o =

∑
i,j v(i, j) ·w(i, j)∑

i,j w(i, j)
, (14)

where i, j are pixel indexes.

D. Overall Quality Estimation

Finally the overall quality Q is estimated from image
structure recovering map s, color rendition map c, and over-
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Fig. 10. Regular and aerial images’ histograms of the color rendition feature
qc and the beta distribution fittings. qc of aerial images are more clustered
near 1, which indicates weaker quality describing ability. PDF: probability
density function.

enhancement o

Q =
1

Z

∑
i,j

s(i, j) ·
[
c(i, j)

]λ · o, (15)

where Z is a normalization factor which represents the total
number of pixels, and i, j are pixel indexes. Similar to FSIMc

[37], we introduce a parameter λ to adjust the importance of
the color information. λ is empirically set, and we will test
the method’s sensitivity to it in Section VI.

V. IMPROVED QUALITY MEASURE FOR AERIAL IMAGES

The above measure is a general dehazing quality measure
which works for various kinds of images, but it has not consid-
ered the characteristics of aerial images. In this section, we first
analyse the differences between regular image dehazing and
aerial image dehazing, and then improve the above measure
specifically for aerial images.

A. Differences Between Regular and Aerial Image Dehazing

We have observed two major differences between regular
and aerial image dehazing, which involve the two major
features utilized by the above measure, i.e., the color ren-
dition and the over-enhancement of low-contrast areas. The
color rendition feature is used to incorporate the color shift
introduced by DHAs. We single out the color rendition feature
from Eq.(15), and describe it as

qc =
1

Z

∑
i,j

[
c(i, j)

]λ
. (16)

Then we compute qc in the regular and aerial subsets of the
SHRQ database. The histograms of qc are illustrated in Fig.
10. It is observed that the histograms generally follow the beta
distribution, whose probability density function (PDF) is

f(qc;α, β) =
qα−1c (1− qc)β−1

B(α, β)
, (17)
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Fig. 11. Regular and aerial images’ histograms of the average local variance v
and the normal distribution fittings. Aerial images have larger local variances
than regular images. PDF: probability density function.

where α, β > 0 are two shape parameters, B(·) is the beta
function. The fitted curves are also given in Fig. 10. It is
observed from both the histograms and fitted cures that qc
of aerial images are more clustered near 1 and more regular
images have lower qc values. It indicates that qc has weaker
quality describing ability in aerial images.

The over-enhancement feature is used to consider the over-
enhancement in low-contrast areas introduced by DHAs. Ex-
amples of over-enhancement effect are illustrated in Fig. 6.
From this figure, we can observe the differences between
the over-enhancement in regular and aerial images. The over-
enhancement in regular image is generally observed in the
low-contrast areas, where some hardly-observed image details
are enhanced as image structures, and such kind of over-
enhancement does much harm to the perceptual quality. While
the over-enhancement in aerial image is wide-spread over the
whole image, and such over-enhancement is easily covered
by the image details and thus does less harm to the perceptual
quality. The reason behind such difference is that the contents
of aerial images are large scale earth surface captured from
high altitude and these images are generally rich in image
details. Whereas the contents of regular images are usually
in much smaller scale and often contains large smooth areas
with low contrast. To have a better understanding of this, we
compute the average local variance of all reference regular and
aerial images in the SHRQ database

v =
1

Z

∑
i,j

σr, (18)

and illustrate their histograms in Fig. 11. It is observed that
they generally follow the normal distribution, whose PDF is

f(v;µ, σ) =
1√
2πσ2

exp

(
− (v − µ)2

2σ2

)
, (19)

where µ, σ are the mean and variance parameters. The fitted
curves are also given in Fig. 11. It is observed from both
the histograms and fitted cures that aerial images have larger
local variances than regular images, which means that they
have much richer image details.
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Fig. 12. Regular and aerial images’ histograms of the proportion of image
areas with low variance similarity and low local variance.

The over-enhancement feature described by Eq.(14) com-
putes the variance similarity of low-contrast areas. Such low-
contrast areas have two characteristics: low variance similarity
and low local variance. We collect some statistics of regular
and aerial images’ proportion of such areas. More specifically,
we identify the image areas which have the lowest 30%
variance similarity and the lowest 30% local variance at the
same time, and calculate the proportion of such areas in the
image. Fig. 12 illustrates the histograms of this proportion in
regular and aerial images of the SHRQ database. It is observed
that more than 90% of aerial images have no more than 1%
of such areas. It indicates that over-enhancement is seldom
observed in the low-contrast areas in aerial images.

B. Improved Measure for Aerial Images

To consider the differences between regular and aerial image
dehazing described above, we improve the quality measure
described by Eq.(15) for aerial images. First, considering that
qc has weaker quality describing ability in aerial images,
we increase the importance of color information, i.e., the
parameter λ, for aerial images. By increasing λ, qc will spread
to lower values and thus have stronger quality describing
ability. Then, considering that over-enhancement is seldom
observed in low-contrast areas in aerial images while the
general over-enhancement effect can be well described by
the image structure recovering feature, we remove the over-
enhancement term from Eq.(15). Finally, the improved quality
measure for aerial images can be described by

Q =
1

Z

∑
i,j

s(i, j) ·
[
c(i, j)

]λ′

, (20)

where the parameter λ′ is specifically set for aerial images and
it is larger than λ. λ′ is also empirically set, and we will test
the method’s sensitivity to it in Section VI.

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

We test the proposed DHA quality measure on both subsets
of the constructed SHRQ database. Since the proposed method

follows the framework of FR IQA, we compare it with 10
state-of-the-art FR IQA measures, including PSNR, SSIM
[21], MS-SSIM [32], VIF [33], MAD [34], IW-SSIM [35],
GSI [36], FSIM [37], IFC [38], and PSIM [39]. We use the
original implementations of all compared algorithms.

Following the practices in [39], [41], [52], [53], [54],
we first map the predicted scores nonlinearly using a five-
parameter logistic function

q(s) = β1

(
1

2
− 1

1 + eβ2(s−β3)

)
+ β4s+ β5, (21)

where {βi|i = 1, 2, ..., 5} are parameters determined via
curve fitting, s and q(s) are predicted and mapped quality
scores. After mapping the predicted scores, we then evaluate
the IQA measures using three criteria: Spearman rank-order
correlation coefficient (SRCC), Pearson linear correlation co-
efficient (PLCC) and root-mean-square error (RMSE), which
measure the prediction monotonicity, linearity and accuracy,
respectively. Higher SRCC, PLCC and lower RMSE indicate
better performance.

B. Performance Comparison with FR Measures

Table III summarizes the performance comparison results.
We test the original measure on both subsets and test the
specifically improved measure on the aerial image subset. It is
observed that the proposed methods show the best performance
on both subsets, and they lead by a large margin. Traditional
FR IQA measures show certain prediction ability, but they
are not accurate enough. It confirms the previous analysis
that FR DHA evaluation is not an exact FR IQA problem.
The haze-free image can be taken as a reference, but it may
not be accurate to use it as the “ground truth” for DHA
evaluation. The proposed method considers such differences,
and extracts some dehazing-relevant features, thus achieves
better performance. For aerial images, the original measure is
also effective and it outperforms traditional FR IQA measures
by a large margin, while the improved measure outperforms
the original measure significantly. Fig. 13 illustrates the scatter
plots of the proposed methods and representative FR IQA
measures on both subsets of the SHRQ database. It is observed
that the scatter points of the proposed methods are more
clustered near the fitted curves on both subsets.

We conduct statistical significance tests to testify if the
performance between any two models are statistically different
on both subsets of the SHRQ database. Similar to [55], we
test the performance by comparing the variances of residuals
between subjective ratings and the nonlinear mapped scores.
Higher/lower variance indicates worse/better performance. The
utilized F-statistic is based on the ratio of two models’
residual variances. The null hypothesis is that the residuals
of two quality models are from the same distribution and they
are statistically indistinguishable with a 95% confidence. We
compare every possible pairs of models, and illustrate the sig-
nificance test results in Fig. 14. The significant superiorities of
the proposed methods are obvious, whereas many competitors
are statistically indistinguishable with each other.
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Fig. 13. Scatter plots of the proposed methods and representative FR IQA measures on the regular and aerial subsets of the SHRQ database. The (black)
lines are curves fitted with the five-parameter logistic function. Different colors and shapes of the scatter points represent different DHAs.

TABLE III
PERFORMANCE COMPARISON WITH FR IQA MEASURES ON THE SHRQ DATABASE. TIME: SECONDS/IMAGE

Subset Criteria
A B C D E F G H I J K L

PSNR SSIM MS-SSIM VIF MAD IW-SSIM GSI FSIM IFC PSIM Pro. Pro.+

Regular
SRCC 0.5972 0.5627 0.5836 0.6287 0.5780 0.5657 0.6029 0.6256 0.5549 0.6238 0.8292 -
PLCC 0.6591 0.6225 0.6276 0.7609 0.6950 0.6172 0.6946 0.7419 0.7354 0.7580 0.8675 -
RMSE 10.417 10.841 10.784 8.9885 9.9602 10.900 9.9650 9.2882 9.3873 9.0350 6.8912 -

Aerial
SRCC 0.8246 0.8207 0.7895 0.7048 0.6308 0.7949 0.7832 0.7424 0.5630 0.7593 0.8615 0.9028
PLCC 0.8040 0.8166 0.7815 0.7651 0.6382 0.7841 0.7719 0.7348 0.6061 0.7338 0.8583 0.9017
RMSE 9.6080 9.3252 10.081 10.404 12.438 10.028 10.272 10.958 12.852 10.976 8.2912 6.9855
Time 0.0017 0.0109 0.0256 0.5985 0.8369 0.2353 0.1105 0.0123 0.5890 0.0394 0.0302 0.0286

C. Performance Comparison with NR Measures
As illustrated in Fig. 1, DHAs can be evaluated either

using synthetic hazy images in a FR style, or using real hazy
images in a NR style. If there are some accurate and reliable
quality measures, NR evaluation using real hazy images would
be the more straightforward and desirable way. But some
subjective quality evaluation study [16] shows that current
blind IQA models are not suitable for NR DHA evaluation. To
further confirm this, we also test some relevant blind quality
estimators, including
• Blind IQA measures for dehazed or contrast-enhanced

images, including FADE [44], the three evaluators e, r
and NS introduced in [15], BIQME [18], Fang15 [56],
NIQMC [57], and DHQI [17].

• General-purpose blind IQA measures, e.g., BRISQUE
[58], NFERM [29], dipIQ [59], MEON [60], BPRI [61],
and BMPRI [62], which are assumed to be able to handle
general IQA problems.

We test these measures on both subsets of the SHRQ database,
and report their performance in Table IV. It is observed that
no measure is effective for dehazed image quality prediction,
which agrees with the study conducted in [16].

D. Ablation Experiment

The proposed methods are composed of several key com-
ponents. We test the contributions of each part by conducting
a series of ablation experiments. We test the performance of
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TABLE IV
PERFORMANCE COMPARISON WITH NR IQA MEASURES ON THE SHRQ DATABASE

Subset Criteria FADE e r NS BIQME Fang15 NIQMC DHQI BRISQUE NFERM dipIQ MEON BPRI BMPRI Pro.(+)

Regular

SRCC 0.2958 0.2344 0.0200 0.0144 0.2751 0.4539 0.4025 0.4241 0.4196 0.1913 0.0417 0.2220 0.0144 0.2206 0.8292
PLCC 0.2722 0.3026 0.1807 0.4324 0.2505 0.5728 0.5551 0.6621 0.5767 0.4574 0.1699 0.3151 0.1664 0.3721 0.8675
RMSE 13.329 13.203 13.624 12.490 13.411 11.355 11.522 10.380 11.317 12.318 13.651 13.147 13.659 12.857 6.8912

Aerial

SRCC 0.6569 0.0980 0.1340 0.4024 0.7018 0.3820 0.6119 0.5675 0.1527 0.3992 0.0707 0.0339 0.2382 0.0895 0.9028
PLCC 0.6743 0.1957 0.2311 0.2283 0.7062 0.6046 0.6325 0.6172 0.3261 0.4782 0.1231 0.2319 0.3709 0.3151 0.9017
RMSE 11.931 15.845 15.720 15.730 11.440 12.870 12.515 12.713 15.274 14.190 16.034 15.717 15.005 15.334 6.9855
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Fig. 14. Statistical significance test results on both subsets of the SHRQ
database. A white/black block indicates that the row model is statistically
better/worse than the column model. A gray block indicates that the row
and column models are statistically indistinguishable. A-L are model indexes
given in Table III.

the proposed methods as shown in Eq.(15) and Eq.(20) under
the following circumstances:

Case 1: The complete algorithm;
Case 2: Excluding the structure recovering term s;
Case 3: Excluding the color rendition term c;
Case 4: Excluding/Including the over-enhancement term o;
Case 5: Excluding the feature modification, i.e., k = 1.

The methods shown in Eq.(15) and Eq.(20) are tested on the
regular and aerial subsets of the SHRQ database, respectively.
The excluded or included are the 4 core parts of the proposed
method. In Case 4, we test the methods by excluding term o
from Eq.(15) or including term o into Eq.(20).

Table V lists the results of the ablation experiments. Any
one of the last 4 cases has lower performance than Case 1,
which means that they all make some contributions to the
overall method. Case 2 shows the lowest performance, which
means that the structure recovering term s contributes most
to the methods. Moreover, modifying the structure features
introduces quite a large improvement, which confirms the
previous analysis about the differences between FR IQA and
FR DHA evaluation. The color rendition term c contributes
little on the regular subset because the dehazed images in
which the color information makes a large difference only
occupy a small part of the database. While on the aerial
subset, the color rendition term contributes much more be-
cause we have increased the importance of color information
considering the differences between regular and aerial image
dehazing as described in Section V. The over-enhancement
term o contributes to the overall method in regular images,

TABLE V
PERFORMANCE RESULTS OF THE ABLATION EXPERIMENTS

Subset Criteria Case 1 Case 2 Case 3 Case 4 Case 5

Regular
SRCC 0.8292 0.6832 0.8211 0.7545 0.7526
PLCC 0.8675 0.7839 0.8617 0.8169 0.8337
RMSE 6.8912 8.6001 7.0295 7.9903 7.6500

Aerial
SRCC 0.9028 0.5462 0.8514 0.8666 0.8391
PLCC 0.9017 0.5368 0.8650 0.8562 0.8229
RMSE 6.9855 13.632 8.1075 8.3463 9.1798

whereas it makes no contribution in aerial images. It confirms
the previous analyses about the differences between regular
and aerial image dehazing.

E. Parameter Sensitivity

The proposed method involves few parameters. The most
important parameters are the linear scaling factor k in Eq.(6)-
Eq.(7) and the color importance parameter λ in Eq.(15) or
λ′ in Eq.(20). k is parameter of the both measures, while λ
and λ′ are parameters of the original and improved measures,
respectively. They are empirically set to 0.2, 0.1, and 0.35.
We test the parameter sensitivity of k, λ, and λ′ from 0.1
to 0.2 with a step of 0.05, from 0 to 0.2 with a step of
0.05, and from 0.25 to 0.45 with a step of 0.05, respectively.
Both parameters can vary at the same time. The original
and improved measures are tested on the regular and aerial
subsets, respectively. Table VI lists the SRCC performance of
all settings. It can be observed that the performance remains
stable within a significantly wide range.

F. Computational Complexity

We test the computational complexity of all compared algo-
rithms, and report the average running time (seconds/image)
for 100 pairs of images with a fixed resolution of 512× 512
in Table III. The algorithms are tested with MATLAB R2017a
operating on a computer with Intel Core i7-7700K CPU @3.60
GHz and 32 GB RAM. The running time includes all feature
extraction and quality prediction time. For all competitors, we
use the original implementations provided by the authors. It is
observed that the proposed methods have considerably low
computational complexity. The improved measure performs
slightly faster than the original measure since we exclude the
over-enhancement feature.
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TABLE VI
SRCC PERFORMANCE RESULTS OF THE PARAMETER SENSITIVITY TESTS.
TOP: THE GENERAL MEASURE ON THE REGULAR SUBSET, BOTTOM: THE

IMPROVED MEASURE ON THE AERIAL SUBSET

λ k 0.1 0.15 0.2 0.25 0.3

0 0.8210 0.8216 0.8211 0.8204 0.8187
0.05 0.8279 0.8277 0.8273 0.8256 0.8243
0.1 0.8309 0.8304 0.8292 0.8268 0.8252
0.15 0.8301 0.8295 0.8282 0.8262 0.8242
0.2 0.8277 0.8274 0.8260 0.8235 0.8213

λ′ k 0.1 0.15 0.2 0.25 0.3

0.25 0.9049 0.9051 0.9045 0.9021 0.8995
0.3 0.9067 0.9060 0.9052 0.9025 0.8992
0.35 0.9051 0.9043 0.9028 0.9007 0.8983
0.4 0.9038 0.9025 0.9007 0.8988 0.8966
0.45 0.9018 0.9009 0.8991 0.8978 0.8950

G. Discussion

Considering the difficulty of evaluating DHAs quantitatively
using real hazy images, the FR DHA evaluation using syn-
thetic hazy images seems more promising. It is convenient
to conduct quantitative evaluation and comparison, thus it
has been becoming more and more widely accepted. Many
recent works have utilized this strategy for DHA evaluation
[1], [8], [9], [10], [11], [20]. This paper follows this FR
DHA evaluation strategy. We point out that using these FR
measures as the criteria is questionable, and they have low
correlation with the subjective evaluation. Moreover, effective
quality measures are proposed for better DHA evaluation in
regular and aerial images.

VII. CONCLUSION

Evaluating DHAs using hazy images synthesized from
reference haze-free images is a widely adopted strategy. In
the current literature, FR IQA measures are used as the
evaluation criteria. But no work has been conducted to test
the effectiveness of FR IQA measures in DHA evaluation. In
this paper, we study this strategy systematically. We construct
a SHRQ database. It consists of a regular image subset and
an aerial image subset, which respectively include 360 and
240 dehazed images created from 45 and 30 synthetic hazy
images using 8 representative DHAs. A subjective user study
is conducted on the database. We observe that there are some
differences between FR DHA evaluation and FR IQA, and
state-of-the-art FR IQA measures are not suitable for the
objective of FR DHA evaluation.

To tackle these problems, we analyse the typical distortions
introduced by dehazing, and propose a FR DHA evaluation
method considering the image structure recovering, color
rendition, and over-enhancement of low-contrast areas. To
consider the differences between FR DHA evaluation and FR
IQA, we modify the structural features of the dehazed image.
The differences between regular and aerial image dehazing
are also analysed, and we improve the method for aerial
images by incorporating the specific characteristics of aerial
images. Effectiveness of the proposed method is verified on

both subsets of the SHRQ database, and all key components
contribute to the overall method. Due to the lack of reliable
quantitative measures for DHA evaluation using real hazy
images, evaluating DHAs using synthetic hazy images is a
promising way. The proposed method provides an effective
evaluation measure, which is of great value for such strategy.
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